
Chapter 5

Synthetic Experiments

In the following Chapters, we present a series of synthetic (or twin) experiments to test
our land surface data assimilation algorithm. Synthetic experiments are assimilation runs
with synthetically generated parameter, model, and measurement errors, allowing us to
compare the estimated and the prior fields to the (synthetic) true fields. Such experiments
are ideally suited to evaluate the performance of the algorithm as all of the uncertain inputs
are known. Furthermore, synthetic experiments allow us to assess the potential impact of
the proposed L-band passive microwave satellite. All experiments are designed to mimic the
conditions during the 1997 Southern Great Plains (SGP97) experiment in central Oklahoma
(Section 5.3.1) which provides a realistic setup.

In this Chapter, we first explain briefly how synthetic experiments are conducted and
explain in more detail why we choose synthetic experiments. Next, we describe the experi-
ment area and the hydrology of the experiment period (Section 5.2). Finally, we describe in
detail the data that we use as inputs to the hydrologic model (Section 5.3). The synthetic
experiments themselves are described in Chapters 6 and 7.

5.1 Synthetic Experiments and Performance Assessment

5.1.1 Design of Synthetic Experiments

For a synthetic experiment, one realization of the uncertain inputs is generated with a ran-
dom number generator and suitable mathematical methods to obtain the desired correlation
structures. The model is then integrated with this realization of the uncertain inputs, and
the output is the corresponding realization of the (synthetic) true state variables. Next, true
values of the measured variables are obtained at specified times and locations by applying
the measurement equation to the (synthetic) true states. Finally, synthetic measurements
are generated by adding synthetically generated measurement error to the true fields of the
measured variables.

In the assimilation procedure, the estimation algorithm is denied knowledge of the given
(true) realization of uncertain inputs. Instead, it is only supplied with the statistics of the
uncertain inputs, that is the prior mean and covariances. The algorithm is also supplied
with the noisy synthetic observations, which contain some information about the particular
realization of the true fields. From the prior statistics and the noisy synthetic observations,
the assimilation algorithm produces a best estimate of the true fields.

If the assimilation algorithm is only supplied with the prior statistics of the uncertain
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inputs but not with the synthetic observations, it will default to the so-called prior solution.
This prior solution or prior state trajectory is derived from a (forward) model integration
with all parameters and model errors set to their prior mean values. In particular, the prior
states do not contain any information about the given realization of the true solution. When
data are assimilated, the prior solution is the starting point for the algorithm to derive the
best estimates of the true states (Section 2.2).

5.1.2 Why Synthetic Experiments?

Synthetic experiments are irreplaceable tools for assessing the performance of the assimila-
tion algorithm. By design, the true solution and the statistics of the uncertain parameters
are perfectly known. If we use the same hydrologic model and the same model inputs for the
generation of the (synthetic) true fields and for the estimation, the assimilation algorithm
is operating under ideal conditions. Non-linear issues aside, the estimate must have certain
features that can be tested with the hypothesis tests described in Sections 2.3.6 and 2.4.1.
Consequently, coding errors can easily be detected and the effects of nonlinearities can be
assessed. Moreover, observing system characteristics can be evaluated and optimized. In
Chapter 6, we describe a series of assimilation experiments under such ideal conditions.

When field data are assimilated, the hydrologic model will only be a crude approximation
of the “model” that nature is using, and the error statistics we specify will likely be poor
approximations of the true error characteristics. By specifying different parameters or
statistics in the estimation process than have been used for the generation of the synthetic
uncertain inputs, such nonideal situations can be investigated. With synthetic experiments,
we can therefore investigate the sensitivity of the estimation algorithm to wrongly specified
error statistics.

Similarly, inputs such as the soil hydraulic parameters will only be poorly known. By
using different soil hydraulic parameters for the generation of the (synthetic) true fields and
for the estimation process, we can emulate the realistic condition of assimilating data into a
model that contains structural errors and bias. To compensate for the discrepancy, we will
likely have to increase the model error variance in the assimilation algorithm. If we conduct
synthetic experiments under such nonideal conditions, we can investigate the influence of
the quality of the hydrologic model on the assimilation. Synthetic experiments allow for
the evaluation of any number of such scenarios.

A final word of caution is in order. We believe that synthetic experiments are useful and
irreplaceable tools for testing the assimilation algorithm and for investigating the sensitivity
of the estimation process to various factors. Synthetic experiments cannot, however, replace
the ultimate test of the algorithm with field observations. Such a field application must
eventually be carried out.

5.2 Experiment Area and Period

The area of the synthetic experiments is located within the SGP97 experiment area. We
choose the domain to coincide loosely with the swath of the airborne ESTAR brightness
temperature measurements (Section 5.3.1). Figure 5.1 shows the horizontal grid of 16 by
32 estimation pixels together with the county lines and the meteorologic stations of the
Oklahoma Mesonet. At a resolution of 5km × 5km, the experiment area covers a total of
12, 800km2 in an 80km× 160km rectangle. The estimation pixels are numbered from 1 to
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512 starting in the southwestern corner and going north until the boundary of the domain
is reached. The numbering continues at the bottom of the next column to the east of the
first column and so on until the northeastern corner of the domain is reached.

The vertical resolution of the saturation is as shown in Figure 4.1 (Section 4.1). Each
column has Nz = 7 vertical nodes for the saturation Wg at 0cm, −5cm, −15cm, −30cm,
−45cm, −60cm, and −90cm. There is only one node per column for each of the other five
states (canopy temperature Tc, vapor pressure ea, temperature in the canopy air space Ta,
soil temperature Tg, and interception water content Wc). Per pixel, we have therefore 12
states, and the state vector has a dimension of 512 ·12 = 6144 at every time step. (Note that
the total number of scalar data in the reference experiments is also 6144 by coincidence.)
The total number of 15 minute time steps in the synthetic experiment is 1280 (see below),
and the total number of states is therefore 6144 · 1280 ≈ 107.
All experiments extend over a two-week period from June 18, 1997 (day 169) to July 2,

1997 (day 183). Figure 5.2 shows time series of the area average micro-meteorologic inputs
as derived from the Oklahoma Mesonet data (Section 5.3.2). The top panel shows the
area average precipitation. Initially, there is a four day drydown across the entire domain.
On day of year 174, significant rain is falling across the entire area. In contrast, the two
major precipitation events of days 177 and 179 are concentrated in the northern half of the
domain. The total rain over the two-week period measured at the stations in the northern
half was between 3cm and 8cm, whereas only 0.5cm to 2cm were observed at the southern
stations. The area average cumulative precipitation over the two-week period is 2.8cm.

The other panels of Figure 5.2 show the area average air temperature, wind speed,
incoming shortwave radiation, and relative humidity. These fields are fairly homogeneous
across the experiment area. Note that the area average quantities are only shown for
illustration. In the synthetic experiments we use spatially distributed data. For details see
Section 5.3.2.

5.3 Inputs to the Hydrologic Model

In this Section, we briefly describe the sources and the character of the various inputs to
the hydrologic model that we use in the synthetic experiments.

5.3.1 The Southern Great Plains 1997 (SGP97) Hydrology Experiment

The Southern Great Plains 1997 (SGP97) Hydrology Experiment took place in the sub-
humid environment in Oklahoma over the one-month period of June 18 – July 17, 1997
[Jackson, 1997; Jackson et al., 1999]. Its main objectives are

1. to examine the estimation of surface soil moisture and temperature using remote
sensing at a hierarchy of scales,

2. to examine the feasibility of estimating vertical profiles of soil moisture and temper-
ature by combining in situ data, remote sensing measurements at the surface, and
modeling techniques,

3. and to evaluate the influence of soil moisture on the local surface energy budget and
the influence of mesoscale variability in the surface energy budget on the development
of the convective boundary layer.
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Figure 5.1: Area for the synthetic experiment. The horizontal grid of 16 by 32 pixels
(80km × 160km) is shown together with the locations of the Oklahoma Mesonet
stations. The horizontal resolution is 5km×5km. Oklahoma City is just to the north
of Mesonet station NORM, on the eastern boundary of the domain.
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Figure 5.2: Area average micro-meteorologic inputs as derived from the Oklahoma Mesonet
data. The panels show (from top to bottom) the area average precipitation, air temper-
ature, wind speed, incoming shortwave radiation, and relative humidity. The two major
precipitation events are concentrated in the northern half of the domain. The area average
quantities are shown for illustration only. In the experiments, we use spatially distributed
data.
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To achieve these objectives, a host of ground-based and remotely sensed data were
gathered. This includes measurements of ground-based soil moisture and soil properties,
airborne boundary layer measurements, atmospheric soundings, vegetation parameters, air-
borne remote sensing measurements, ground-based remote sensing observations, satellite
remote sensing measurements, surface flux data, and surface hydrometeorologic measure-
ments. Moreover, micro-meteorologic data were provided by the Oklahoma Mesonet (Sec-
tion 5.3.2), and soil texture classes were compiled by the Earth System Science Center
(ESSC) at Pennsylvania State University (Section 5.3.3).

In the synthetic experiments of Chapters 6 and 7, we use the Oklahoma Mesonet data
for the micro-meteorologic inputs, the ESSC database for the soil texture classification,
and the land cover map to obtain the vegetation class for each pixel. In addition, for the
Radiative Transfer model we use the maps of the vegetation water content Wv, the surface
roughness parameter βεg , and the vegetation parameter βδc .

The land cover data are derived from Landsat Thematic Mapper (TM) images and
come in 30m resolution. The parameters of the Radiative Transfer model are available at a
resolution of 800m. According to their type, the data were aggregated to the resolution of
the estimation grid by assigning the class of the block majority to the estimation pixel or
by averaging over the estimation pixels. Figure 5.3 shows a map of the land cover classes
aggregated to the 5km resolution. The projection is Universal Transverse Mercator (UTM),
Zone 14, which is used throughout this thesis. The predominant land cover class is pasture.
In the northern half, there are also large areas of wheat cultivation. The remaining land
cover classes include forage, shrub, urban, and water. For the synthetic experiment, we
neglect the latter two classes and use the pasture properties for the corresponding pixels as
well as for the pixels for which there are no data available. This change does not affect the
results of the synthetic experiments. When field data are assimilated, however, the water
bodies and urban areas need to be treated separately.

Remotely Sensed Brightness Temperature from ESTAR

During the SGP97 field campaign, the Electronically Scanned and Thinned Array Radiome-
ter (ESTAR) was flown daily on the NASA P3 aircraft. ESTAR successfully recorded sixteen
images of L-band brightness temperatures (1.4GHz) on a swath of roughly 50km×200km at
a resolution of 800m. Together with the ground-based soil moisture [Famiglietti et al., 1999]
and flux measurements, these invaluable data will allow a first test of the soil moisture as-
similation algorithm on field data.

5.3.2 Micro-meteorologic Inputs: The Oklahoma Mesonet

The micro-meteorologic inputs to our land-surface model consist of six data types: precip-
itation Pr, incoming shortwave radiation Rrs, air temperature Tr, vapor pressure er, wind
speed ur, and depth average soil temperature Td. All of the above are directly available or
easily derived from the Oklahoma Mesonet data [Brock et al., 1995].

The Oklahoma Mesonet is a statewide network of 115 automated weather observing
stations. It is unique in its dense spatial coverage, with an average distance between sites
of about 31km [Basara et al., 1999]. Among other parameters, each site records at five
minute intervals relative humidity at 1.5m height above the ground, air temperature at
1.5m, average wind speed at 10m, rainfall, barometric pressure, and solar radiation. In

92



Figure 5.3: Surface soil texture and land cover classes for the synthetic experi-
ment. The surface soil texture map has been derived from the ESSC data base
(Section 5.3.3), and the land cover map has been obtained from SGP97 data (Sec-
tion 5.3.1). The dominant soil texture classes are sand loam (SL), silt loam (SIL),
and loam (L). There are also some areas where sand (S) and clay loam (CL) can be
found. The dominant land cover class is pasture. In the northern half of the domain,
there are also large areas of wheat. The urban, water, and no-data pixels are treated
as pasture in the synthetic experiment. The horizontal resolution is 5km× 5km.
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addition, bare and vegetated soil temperature at 10cm depth are measured at 15 minute
intervals.
There are a number of supplemental parameters available. Of most interest to us are

observations of the bare and vegetated soil temperatures at 5cm and at 30cm, which are
taken at nearly half of the stations. Recently, many stations have been upgraded with heat
dissipation sensors and time-domain reflectometry (TDR) probes to record soil moisture
profiles [Basara et al., 1999]. Unfortunately, at the time of this writing there were still a few
unresolved issues in the calibration of the moisture probes. In the future, such operational
ground-based soil moisture data have great potential for assimilation into a land-surface
model and for the validation of such algorithms.

Preprocessing the Micro-meteorologic Inputs

Before using the Mesonet data as inputs to our land-surface model, we apply a few prepro-
cessing steps. The very few missing data points are filled in with neighboring observations
or earlier observations at the same site. The observed relative humidity is converted into
the vapor pressure using the measured air temperature. The deep soil temperature of the
force-restore equation (3.7) is obtained from a monthly average of the air temperature.
The five minute interval for the micro-meteorologic inputs is attractive from a modeling

point of view, as it allows to resolve the dynamics very finely. On the other hand, the model
runs become very computationally demanding. We therefore average the five minute data
to 15 minute inputs. Consequently, the basic time step of the tangent-linear and the adjoint
models is 15 minutes. Note, however, that the initial prior state trajectory is obtained by
solving the nonlinear land surface model with a variable time step (Section 4.10). During
and after a rain event, the time step of the nonlinear model is typically reduced to a few
seconds.
Even though the network of the Oklahoma Mesonet is very dense, the resolution is still

too coarse for direct use in the hydrologic model. We interpolate the data with inverse
square distance weights to the grid of estimation pixels. The weights for the seventeen
stations of the synthetic experiment are shown in Figure 5.4.
It is important to note that we did not place emphasis on the optimal preprocessing

of the micro-meteorologic data. Our focus is on the assimilation algorithm rather than on
the calibration of the hydrologic model. Most importantly, the quality of the meteorologic
inputs will be a lot poorer in future operational applications of land-surface hydrologic
data assimilation. By including model error, the data assimilation algorithm is expressly
designed to account for such deficiencies (Section 4.5).

5.3.3 Soil Properties

The database of the Earth System Science Center (ESSC) at Pennsylvania State University
contains a variety of geographically referenced data sets. For the convenience of SGP97
researchers, the ESSC derived soil properties and land cover data from the State Soil Ge-
ographic (STATSGO) data set compiled by the Natural Resources Conservation Service
(NRCS) of the U.S. Department of Agriculture. In our synthetic experiments, we use the
dominant soil texture data, the sand and clay fraction data, and the bulk density data, all
of which are available at 1km resolution for each of 11 standard soil layers.
The data sets come in the Universal Transverse Mercator (UTM), Zone 14 projection,

which we use throughout this study. The aggregation of the data to the estimation grid
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Figure 5.4: Inverse square distance weights for the interpolation of the micro-
meteorologic inputs. The 0.1, 0.3, 0.5, 0.7, and 0.9 contour lines are shown. The
locations of the seventeen Oklahoma Mesonet stations used in the synthetic experi-
ments of Chapters 6 and 7 are also shown in Figure 5.1. The average distance between
stations is only 31km.
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was performed according to the data type by assigning the class of the block majority or
by averaging. Figure 5.3 shows a map of the surface soil texture classes at 5km resolution.
The dominant textures are sand loam (SL), silt loam (SIL), and loam (L). There are also
some spots with sand (S) and clay loam (CL). Note the streaky pattern of both the soil
texture and the land cover classes in the northwestern corner of the domain. This pattern
can be recognized in the soil moisture fields during drydowns (Figure 6.3).

5.3.4 Other Data Sources

Not all of the inputs necessary to run the hydrologic model are provided by the SGP97 data
set. Each soil texture and land cover class still needs to be translated into the corresponding
numerical parameters. Vegetation parameters for the Little Washita catchment, which is
located within the SGP97 experiment area, are tabulated in [Kustas and Jackson, 1999].
Inputs to land-surface schemes within General Circulation Models can be found in [Sellers,
Los, Tucker, Justice, Dazlich, Collatz and Randall, 1996]. Similar data for the roughness
length z0, the fractional vegetation cover fc, the vegetation albedo ac, the minimum stomatal
resistance rmins , and the leaf and stem area indices LAI and SAI can be found in [Dickinson
et al., 1993]. Typical values for the roughness length z0 are also tabulated in [Dorman and
Sellers, 1989]. Yang et al. [1998] give typical rooting depths. The soil hydraulic parameters
are based on the data published by Clapp and Hornberger [1978]. Finally, the parameters βrc

and βrd of the resistance network are given in [Sellers and Dorman, 1987].
The choice of the above parameters amounts to calibrating the hydrologic model, a task

which we performed only in a rudimentary fashion. Our focus is on the performance of the
assimilation algorithm and not on model calibration. For the synthetic experiments pre-
sented here the calibration matters little. However, for the future assimilation of field data
such as the ESTAR brightness observations, the model must be reasonably well calibrated.
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